On estimating the structure factor of a point process, with applications to hyperuniformity

Diala Hawat,

Guillaume Gautier, Rémi Bardenet, and Raphaël Lachièze-Rey

Université de Lille, CNRS, Centrale Lille ; UMR 9189 – CRIStAL, F-59000 Lille, France. Université Paris Cité, Map5, Paris, France.



- 2 Estimation of the structure factor
- 3 Hyperuniformity test
- 4 Numerical experiment
- 5 Code availability

# Hyperuniformity using the structure factor

Let  $\mathcal{X} \subset \mathbb{R}^d$  be a stationary point process of intensity  $\rho$ Structure factor S

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

■ Structure factor *S* 

$$S(\mathbf{k}) = 1 + 
ho \mathcal{F}(g-1)(\mathbf{k})$$

Pair correlation function g

$$\mathbb{E}\left[\sum_{\mathbf{x},\mathbf{y}\in\mathcal{X}}^{\neq} f(\mathbf{x},\mathbf{y})\right] = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(\mathbf{x} + \mathbf{y},\mathbf{y}) \rho^2 g(\mathbf{x}) \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y}$$

# $\mathcal{X}$ is hyperuniform $\iff \lim_{R \to \infty} \frac{\operatorname{Var}(\operatorname{Card}(\mathcal{X} \cap B(0,R)))}{|B(0,R)|} = 0$

Structure factor S

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

**\mathcal{X}** is hyperuniform iff

S(0) = 0

S. Coste. Order, Fluctuations, Rigidities, 2021.

S. Torquato. Hyperuniform States of Matter, 2018.

•  $\mathcal{X}$  is hyperuniform with  $|S(\mathbf{k})| \sim c \|\mathbf{k}\|_2^{\alpha}$  in the neighborhood of 0 then,

| α      | $Var[Card(\mathcal{X} \cap B(0, R))]$ | class |
|--------|---------------------------------------|-------|
| > 1    | $O(R^{d-1})$                          | I     |
| 1      | $O(R^{d-1}\log(R))$                   | 11    |
| ]0, 1[ | $O(R^{d-\alpha})$                     |       |

Diala Hawat,

Definition

S. Coste. Order, Fluctuations, Rigidities, 2021.

S. Torquato. Hyperuniform States of Matter, 2018.

Estimation of the structure factor

# Estimation of the structure factor

Diala Hawat,

On estimating the structure factor of a point process, with applications to hyperuniformity

Estimation of the structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

Estimation of the structure factor

• 
$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g - 1)(\mathbf{k})$$
  
• Box window :  $W = [-L/2, L/2]^d$ 

Estimation of the structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$
  

$$Box window : W = [-L/2, L/2]^d$$
  

$$S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[ \frac{1}{\rho |W|} \left| \sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i \langle \mathbf{k}, \mathbf{x} \rangle} \right|^2 \right] - \rho \left( \prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L/2}} \right)^2$$

Estimation of the structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

$$Box \text{ window } : W = [-L/2, L/2]^d$$

$$S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[ \frac{1}{\rho |W|} \left| \sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \right|^2 \right] - \underbrace{\rho \left( \prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L/2}} \right)^2}_{\epsilon_0(\mathbf{k}, \mathbf{L})}$$

$$\epsilon_0(\mathbf{k}, \mathbf{L}) \leq \begin{cases} 0 & \text{if } \exists j \text{ s.t. } k_j = \frac{2\pi n}{L} \text{ with } n \in \mathbb{Z}^* \\ \alpha \text{ s } ||\mathbf{k}||_2 \to 0 \\ 2^{2d} \prod_{j=1}^d \frac{1}{Lk_j^2} & \text{ as } ||\mathbf{k}||_2 \to \infty \end{cases}$$

Estimation of the structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g - 1)(\mathbf{k})$$
  
Box window :  $W = [-L/2, L/2]^d$   

$$S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}\left[\frac{1}{\rho|W|} |\sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle}|^2\right] - \rho \underbrace{\left(\prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L}/2}\right)^2}_{\widehat{S}_{\mathrm{SI}}(\mathbf{k})}$$

Allowed wavevectors:

 $\mathbb{A}_{\mathbf{L}} = \{ (k_1, \cdots, k_d) \in (\mathbb{R}^d)^*, \exists j \in \{1, \cdots, d\}, n \in \mathbb{Z}^* \text{ s.t. } k_j = \frac{2\pi n}{L} \}$ 

• Minimum wavenumber:  $\|\mathbf{k}_{min}\|_2 = \frac{2\pi}{L}$ 

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey *On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.* 

Diala Hawat,

On estimating the structure factor of a point process, with applications to hyperuniformity

Estimation of the structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$
  
Box window :  $W = [-L/2, L/2]^d$   

$$S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}\left[\frac{1}{\rho|W|} |\sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle}|^2\right] - \rho \underbrace{\left(\prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L}/2}\right)^2}_{\widehat{S}_{\mathrm{SI}}(\mathbf{k})}$$

Allowed wavevectors:

 $\mathbb{A}_{\mathbf{L}} = \{ (k_1, \cdots, k_d) \in (\mathbb{R}^d)^*, \exists j \in \{1, \cdots, d\}, n \in \mathbb{Z}^* \text{ s.t. } k_j = \frac{2\pi n}{L} \}$ 

• Minimum wavenumber:  $\|\mathbf{k}_{min}\|_2 = \frac{2\pi}{L}$ 

T. A. Rajala, S. C. Olhede, and D. J. Murrell. What is the fourier transform of a spatial point process? 2020.

Estimation of the structure factor

# Isotropic case

Estimation of the structure factor

Structure factor: S(k) = 1 + ρF(g - 1)(k)
 Isotropic case:

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

Estimation of the structure factor

• 
$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$
  
• Ball window :  $W = B(0, R)$ 

Estimation of the structure factor

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$
  
Ball window :  $W = B(0, R)$   

$$S(k) = \lim_{R \to \infty} \mathbb{E} \left[ 1 + \frac{(2\pi)^{\frac{d}{2}}}{\rho |W| \omega_{d-1}} \sum_{\mathbf{x}, \mathbf{y} \in \mathcal{X} \cap W} \frac{J_{d/2-1}(k ||\mathbf{x} - \mathbf{y}||_2)}{(k ||\mathbf{x} - \mathbf{y}||_2)^{d/2-1}} \right] + \epsilon_1(k, R)$$
  

$$\epsilon_1(k, R) = \begin{cases} 0 & \text{if } k = \frac{x}{R} \text{ with } J_{d/2}(x) = 0, \\ O(R^d) & \text{as } k \to 0, \\ O\left(\frac{1}{k^d (Rk)^{2/3}}\right) & \text{as } k \to \infty. \end{cases}$$

Estimation of the structure factor

■ 
$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$
  
■ Ball window :  $W = B(0, R)$   
■  $S(k) =$   
 $\lim_{R \to \infty} \mathbb{E} \Big[ 1 + \frac{(2\pi)^{\frac{d}{2}}}{\rho |W| \omega_{d-1}} \sum_{\mathbf{x}, \mathbf{y} \in \mathcal{X} \cap W} \frac{J_{d/2-1}(k ||\mathbf{x} - \mathbf{y}||_2)}{(k ||\mathbf{x} - \mathbf{y}||_2)^{d/2-1}} \Big] + \epsilon_1(k, R)$   
■ Allowed wavenumbers:  $\mathbb{A}_R = \{k = \frac{x}{R} \in \mathbb{R}^*, \text{ s.t. } J_{d/2}(x) = 0\}$   
■ Minimum wavenumber:  $k_{min} = \frac{x_0}{R}$ 

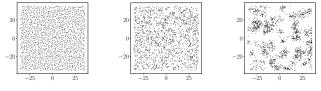
Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

Diala Hawat,

On estimating the structure factor of a point process, with applications to hyperuniformity

### **Comparison of the estimators**

Estimation of the structure factor



(a) Ginibre S(0) = 0 (b) Poisson S(0) = 1 (c) Thomas S(0) > 1

### **Comparison of the estimators**

#### Estimation of the structure factor



(a) Ginibre S(0) = 0 (b) Poisson S(0) = 1 (c) Thomas S(0) > 1

#### Table: Sample integrated variance and MSE

| Estimators                  | iVar                | CI[iMSE]                                              | iVar    | CI[iMSE]                                  | iVar   | CI[iMSE]         |
|-----------------------------|---------------------|-------------------------------------------------------|---------|-------------------------------------------|--------|------------------|
| $\widehat{S}_{SI}$          | 0.32                | $0.32\pm0.02$                                         | 1.31    | $1.34\pm0.06$                             | 69.51  | $70.71\pm17.95$  |
| $\widehat{S}_{\mathrm{BI}}$ | $3.9 	imes 10^{-3}$ | $\textbf{4.0}\times\textbf{10^{-3}}\pm3\times10^{-4}$ | 0.057   | $\boldsymbol{0.058} \pm 9 \times 10^{-3}$ | 11.25  | $11.65 \pm 4.71$ |
|                             | Ginibre             |                                                       | Poisson |                                           | Thomas |                  |

# Multiscale hyperuniformity test

• Need: Check if  $S(\mathbf{0}) = 0$ 

Problem: We don't have an unbiased estimator of  $S(\mathbf{0})$ 

- Need: Check if  $S(\mathbf{0}) = 0$
- Problem: We don't have an unbiased estimator of S(0)
- On allowed wavevectors we have:  $S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}[\widehat{S}_{SI}(\mathbf{k})], \ S(k) = \lim_{R \to \infty} \mathbb{E}[\widehat{S}_{BI}(k)]$
- How one can construct unbiased estimators when only biased estimators are available?

### **Coupled sum estimator**

Hyperuniformity test

- Need: estimate  $\mathbb{E}[Y] := \overline{Y}$
- Able to generate a sequence of r.v.  $(Y_m)_m$  s.t.  $\overline{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$

C. Rhee and P.W. Glynn. Unbiased estimation with square root convergence for SDE models, 2015.

Hyperuniformity test

• Need: estimate  $\mathbb{E}[Y] := \bar{Y}$ 

Able to generate a sequence of r.v.  $(Y_m)_m$  s.t.  $\overline{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$ 

Consider an N-r.v. M s.t.,  $\mathbb{P}(M \ge j) > 0$  for all j, and let  $Y_0 = 0$ 

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

C. Rhee and P.W. Glynn. Unbiased estimation with square root convergence for SDE models, 2015.

### **Coupled sum estimator**

Hyperuniformity test

• Need: estimate  $\mathbb{E}[Y] := \bar{Y}$ 

Able to generate a sequence of r.v.  $(Y_m)_m$  s.t.  $\overline{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$ 

Consider an N-r.v. M s.t.,  $\mathbb{P}(M \ge j) > 0$  for all j, and let  $Y_0 = 0$ 

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

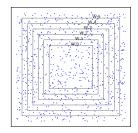
• 
$$\mathbb{E}[Z_m] = \mathbb{E}[Y_m]$$
 and  $Z_m \xrightarrow[m \to \infty]{} Z := \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$   
• If  $Y_m \xrightarrow[m \to \infty]{} Y$  + some hypotheses, then  $\mathbb{E}[Z] = \overline{Y}$ 

C. Rhee and P.W. Glynn. Unbiased estimation with square root convergence for SDE models, 2015.

### Multiscale hyperuniformity test

Hyperuniformity test

- Consider an increasing sequence of sets  $(\mathcal{X} \cap W_m)_{m \ge 1}$ , with  $\{W_m\}_m \uparrow$  and  $W_{\infty} = \mathbb{R}^d$
- **k**<sub>m</sub><sup>min</sup> minimum allowed wavevector associated to  $W_m$ , **k**<sub>m</sub><sup>min</sup>  $\xrightarrow[m \to \infty]{}$  **0**



Hyperuniformity test

- Consider an increasing sequence of sets  $(\mathcal{X} \cap W_m)_{m \ge 1}$ , with  $\{W_m\}_m \uparrow$  and  $W_{\infty} = \mathbb{R}^d$
- $\mathbf{k}_m^{\min}$  minimum allowed wavevector associated to  $W_m$ ,  $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$
- Take  $Y_m = 1 \land \widehat{S}_m(\mathbf{k}_m^{\min})$  $Z = \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$  with M is an  $\mathbb{N}$ -r.v. such that  $\mathbb{P}(M \ge j) > 0$  for all j, and  $Y_0 = 0$

### Multiscale hyperuniformity test

#### Hyperuniformity test

- Consider an increasing sequence of sets  $(\mathcal{X} \cap W_m)_{m \ge 1}$ , with  $\{W_m\}_m \uparrow$  and  $W_{\infty} = \mathbb{R}^d$
- **k**<sub>m</sub><sup>min</sup> minimum allowed wavevector associated to  $W_m$ , **k**<sub>m</sub><sup>min</sup>  $\xrightarrow{m \to \infty} \mathbf{0}$
- Take  $Y_m = 1 \land \widehat{S}_m(\mathbf{k}_m^{\min})$  $Z = \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$  with M is an  $\mathbb{N}$ -r.v. such that  $\mathbb{P}(M \ge j) > 0$  for all j, and  $Y_0 = 0$

Proposition

Assume that  $M \in L^p$  for some  $p \ge 1$ . Then  $Z \in L^p$  and  $Z_m \to Z$  in  $L^p$ . Moreover,

- 1 If  $\mathcal{X}$  is hyperuniform, then  $\mathbb{E}[Z] = 0$ .
- 2 If  $\mathcal{X}$  is not hyperuniform and  $\sup_{m} \mathbb{E}[\widehat{S}_{m}^{2}(\mathbf{k}_{m}^{\min})] < \infty$ , then  $\mathbb{E}[Z] \neq 0$ .

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

Diala Hawat,

On estimating the structure factor of a point process, with applications to hyperuniformity

### Multiscale hyperuniformity test

Hyperuniformity test

Need: Check 
$$\mathbb{E}[Z] = 0$$
, with  $Z = \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$   
Test:

- *M* a Poisson r.v. of parameter  $\lambda$
- i.i.d. pairs  $(\mathcal{X}_a, M_a)_{a=1}^A$  of realizations of  $(\mathcal{X}, M)$
- Asymptotic confidence interval  $CI[\mathbb{E}[Z]]$  of level  $\zeta$

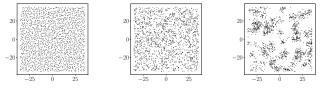
$$CI[\mathbb{E}[Z]] = \left[\bar{Z}_A - z\bar{\sigma}_A A^{-1/2}, \bar{Z}_A + z\bar{\sigma}_A A^{-1/2}\right]$$

with  $\mathbb{P}(-z < \mathcal{N}(0, 1) < z) = \zeta$ 

• Assessing whether 0 lies in  $CI[\mathbb{E}[Z]]$ 

### **Point processes**

Numerical experiment



(a) Ginibre S(0) = 0 (b) Poisson S(0) = 1 (c) Thomas S(0) > 1

Diala Hawat,

16

### Multiscale hyperuniformity test

Numerical experiment

### $\mathcal{X}$ is hyperuniform $\iff \mathbb{E}[Z] = 0$

#### Table: Multiscale hyperuniformity test

|         | $\bar{Z}_{50}$     | $CI[\mathbb{E}[Z]]$ | $\bar{Z}_{50}$              | $CI[\mathbb{E}[Z]]$ |
|---------|--------------------|---------------------|-----------------------------|---------------------|
| Ginibre | 0.015              | [-0.021,0.051]      | 0.007                       | [-0.003, 0.011]     |
| Poisson | 0.832              | [0.444, 1.220]      | 0.781                       | [0.560, 1.001]      |
| Thomas  | 0.928              | [0.788, 1.068]      | 1                           | [0.999, 1]          |
| Ŝ       | $\widehat{S}_{SI}$ |                     | $\widehat{S}_{\mathrm{BI}}$ |                     |

### Multiscale hyperuniformity test

Numerical experiment

 $\mathcal{X}$  is hyperuniform  $\iff \mathbb{E}[Z] = 0$ 

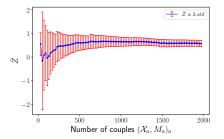


Figure:  $CI[\mathbb{E}[\overline{Z}]]$  for a Poisson point process with the scattering intensity, as a function of the number of realizations of Z.

Numerical experiment

- $\mathcal{X}$  a point process of intensity  $\rho$
- $\mathcal{X}_p$  an independent *p*-thinning with  $p \in (0, 1)$

M. A. Klatt, G. Last, and N. Henze. A genuine test for hyperuniformity, 2022.

Diala Hawat,

On estimating the structure factor of a point process, with applications to hyperuniformity

J. Kim and S. Torquato. *Effect of imperfections on the hyperuniformity of many-body systems*, 2018.

Numerical experiment

- $\mathcal{X}$  a point process of intensity  $\rho$
- **\mathbf{\mathcal{X}}\_{p}** an independent *p*-thinning with  $p \in (0, 1)$
- Intensity:  $\rho_p = p \times \rho$

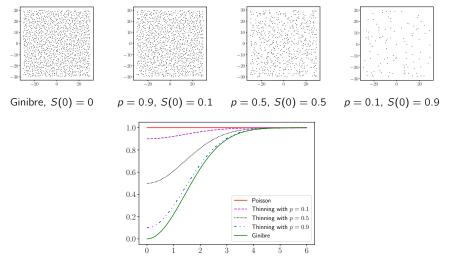
- $\mathcal{X}$  a point process of intensity  $\rho$
- **\mathbf{Z}\_p** an independent *p*-thinning with  $p \in (0, 1)$
- Intensity:  $\rho_p = p \times \rho$
- Pair correlation function:  $g_p(\mathbf{r}) = g(\mathbf{r})$

- $\mathcal{X}$  a point process of intensity  $\rho$
- **\mathbf{Z}\_p** an independent *p*-thinning with  $p \in (0, 1)$
- Intensity:  $\rho_p = p \times \rho$
- Pair correlation function:  $g_{\rho}(\mathbf{r}) = g(\mathbf{r})$
- Structure factor:  $S_p(\mathbf{k}) = pS(\mathbf{k}) + 1 p$

- $\mathcal{X}$  a point process of intensity  $\rho$
- $\mathcal{X}_p$  an independent *p*-thinning with  $p \in (0, 1)$
- Intensity:  $\rho_p = p \times \rho$
- Pair correlation function:  $g_p(\mathbf{r}) = g(\mathbf{r})$
- Structure factor:  $S_p(\mathbf{k}) = pS(\mathbf{k}) + 1 p$
- $\mathcal{X}$  is hyperuniform  $\implies S_p(\mathbf{0}) = 1 p$

## Multiscale hyperuniformity test

#### Numerical experiment



### Structure factor

# Multiscale hyperuniformity test

#### Numerical experiment

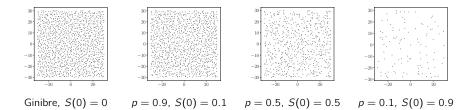


Table: Multiscale hyperuniformity test obtained using  $\widehat{S}_{\rm BI}$  on the thinned Ginibre process.

|                                   | ĪΖΑ    | $CI[\mathbb{E}[Z]]$ |
|-----------------------------------|--------|---------------------|
| Ginibre                           | 0.0057 | [-0.0042, 0.0156]   |
| Thinning $p = 0.9$ , $S(0) = 0.1$ | 0.0865 | [0.0411, 0.1318]    |
| Thinning $p = 0.5$ , $S(0) = 0.5$ | 0.5722 | [0.4227, 0.7217]    |
| Thinning $p = 0.1$ , $S(0) = 0.9$ | 0.611  | [0.2082, 1.0137]    |

## **Properties and limitations**

Numerical experiment

### • Validity for any class of hyperuniform point process $\ensuremath{\mathfrak{O}}$

## **Properties and limitations**

Numerical experiment

Validity for any class of hyperuniform point process 
Code availability

Numerical experiment

- Validity for any class of hyperuniform point process ☺
- Code availability ③
- Need many realisations of the point process S

# Code availability

Code availability

- Open-source Python toolbox called structure\_factor<sup>1</sup>
- 2 Available on **O** GiThub and PyPI <sup>2</sup>
- 3 Detailed documentation <sup>3</sup>
- 4 Jupyter notebook tutorial <sup>4</sup>

<sup>1</sup>https://github.com/For-a-few-DPPs-more/structure-factor

<sup>2</sup>https://pypi.org/project/structure-factor/

<sup>3</sup>https://for-a-few-dpps-more.github.io/structure-factor/

<sup>4</sup>https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks

# Conclusion

Code availability

- Estimators of the structure factor
- Statistical test of hyperuniformity
- Python toolbox structure-factor

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

# THANK YOU

Code availability



Github



Documentation



Preprint

Github: https://github.com/For-a-few-DPPs-more/structure-factor Documentation: https://for-a-few-dpps-more.github.io/structure-factor/ Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

Diala Hawat,

On estimating the structure factor of a point process, with applications to hyperuniformity